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Abstract

Objectives The aim of this study was to investigate the effect of g-glutamylcysteine
ethylester (GCEE), a precursor of glutathione biosynthesis, on the levels of glutathione,
formation of reactive oxygen species and c-fos mRNA expression in rat hippocampus and
cortex in kainic acid-induced excitotoxicity.
Methods Sprague–Dawley rats were used and divided into four groups: control, kainic
acid (10 mg/kg), GCEE (10 mg/kg) and kainic acid (10 mg/kg) + GCEE (10 mg/kg). Kainic
acid and GCEE were administered to the rats intraperitoneally. The levels of glutathione and
the expressions of c-fos mRNA in hippocampus and cortex tissues were determined using
spectrophotometric and reverse transcription followed real-time PCR methods, respectively.
Formation of reactive oxygen species was determined using dichlorofluorescin fluorescence
in brain synaptosomes treated with kainic acid or GCEE in vitro.
Key findings Kainic acid treatment significiantly upregulated the expression of c-fos
mRNA in the hippocampus and cortex when compared to the control group. GCEE treat-
ment significantly decreased the levels of c-fos mRNA in the cortex when compared to the
kainic acid-treated group. GCEE treatment against kainic acid significantly increased the
levels of glutathione in the cortex and hippocampus, and decreased the levels of formation
of reactive oxygen species when compared to kainic acid-treated synaptosomes.
Conclusions The increased levels of glutathione and the reduced levels of reactive oxygen
species formation lead us to conclude that GCEE may be beneficial as a potential antioxidant
against neurodegenerative processes where excitotoxicity is involved.
Keywords g-glutamylcysteine ethylester; c-fos mRNA; glutathione; kainic acid; rat brain;
reactive oxygen species

Introduction

Glutamate is a primary excitatory neurotransmitter in the central nervous system. It is well
established that the glutamate receptors play a critical role in the neuronal survival and
refinement of neuronal connections during brain development, as well as in the synaptic
plasticity underlying learning and memory.[1,2] Over-activation of glutamate receptors leads
to neurodegeneration and this phenomenon, called excitotoxicity, has been implicated in
major areas of brain pathology.[3,4] Glutamate induced excitotoxicity is a triggering factor
that causes neurodegeneration underlying central nervous system pathologies such as epi-
lepsy, stroke and Alzheimer’s disease.[5] Kainic acid (KA) is a glutamate analogue. Systemic
administration of KA to rodents at convulsant doses induces epileptic seizures and excito-
toxic cell death in neurons of the entorhinal cortex, amygdala, CA1 and CA3 regions, and
hilus of the hippocampus.[6]

It has been hypothesised that increased levels of intracellular calcium trigger the excito-
toxic process. In addition glutamate-mediated excitotoxicity activates certain enzymes by
calcium-dependent pathways.[7] These enzymes are calpains, protein kinase C, lipases,
phospholipases, endonucleases, xanthine oxidase, nitric oxide synthase and the arachidonic
acid cascade. Oxidative stress and the formation of reactive oxygen species (ROS) are other
key components of neurotoxicity induced by glutamate.[8,9] KA-induced neuronal death in
certain brain regions such as the hippocampus and cortex shows an apoptotic character,
which is accompanied by a specific pattern of immediate early gene (IEG) induction.[10,11]
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Proto-oncogene c-fos, a member of the immediate early
gene family, is highly expressed in specific types of neurons
during brain development, although the levels are lower in
adulthood.[12] Following a variety of physiological stimuli,
chemical agents and transmitter agonists, c-fos gene expres-
sion is rapidly and transiently induced in many cell types for
signalling late-response genes that generate functional pro-
teins.[12,13] c-fos activation has been proposed as a marker of
neuronal injury since its induction is promoted by abnormal
brain function.[14] c-fos mRNA expression triggered by KA in
rat brains shows specific patterns. The c-fos expression is
mainly observed in the hippocampus and cerebral cortex.
Calmodulin is involved in the process of c-fos induction.[15,16]

Previous studies examining the role of oxidative stress in
neurodegenerative diseases, ageing and carcinogenesis have
been concentrated on the characterisation of the cellular anti-
oxidant defence systems. The primary defences of eukaryotic
cells against oxidative stress include antioxidant enzymes and
glutathione (GSH)-utilising systems.[17,18] The ratio of intra-
cellular thiol reductants and ROS plays a pivotal role in deter-
mining whether cells undergo growth or apoptosis.[18,19]

Because of the inadequate antioxidant capacity of brain, GSH
is highly important as an endogenous antioxidant. Intravenous
or oral administration of GSH provides only constituent
amino acids. It is known that GSH is poorly taken up by cells
and is rapidly degraded in the circulation. GSH is also not able
to cross the blood–brain barrier.[20,21]

It has been shown that GCEE can upregulate GSH levels in
rat brains as a precursor of glutathione biosynthesis. GCEE
treatment prevents feedback inhibition of g-glutamylcysteine
synthase (the rate limiting enzyme) activity and provides cys-
teine (the limiting substrate) for GSH synthesis in order to
upregulate the levels of GSH.[22,23]

The present study aims to investigate the effect of GCEE
on the levels of GSH, ROS formation and the expressions of
c-fos mRNA in rat brain cortex and hippocampus tissues
treated with KA.

Materials and Methods

Animals and treatments
Twenty adult male Sprague–Dawley rats, weighing 200–
250 g, were used in the present study. All animals were main-
tained on a 12 : 12 h light : dark cycle and given continuous
access to food and water. The protocol for the experiment was
approved by the Appropriate Animal Care and Use Committee
of Ege University.

Animals were divided into four groups: (1) the control
group (n = 4–6), 1 ml/kg saline; (2) KA group (n = 4–6),
10 mg/kg kainic acid only; (3) GCEE group (n =
4–6), 10 mg/kg GCEE only; (4) KA+GCEE group (n = 4–6),
10 mg/kg GCEE plus 10 mg/kg KA. Saline, KA and GCEE
injections were administered to the rats intraperitoneally
(i.p.).

GCEE was purchased from Bachem (Torrance, CA, USA)
and KA was obtained from Sigma-Aldrich (Vienna, Austria).
GCEE and KA were dissolved in saline. Animals injected
with KA were kept under observation for 3 h to score seizure
sensitivity and behavioural alterations. At the end of the
observation period, rats were decapitated and the brains were

removed. Cortex and hippocampus tissues were dissected on
ice. All samples were stored at -80°C until use.

Measurement of glutathione levels
GSH levels in the hippocampus and cortex were measured
enzymatically by using a modified version of the DTNB-GSH
reductase assay[24,25] as described by Drake et al.[23] The
method is based on the determination of a chromophoric
product, 2-nitro-5-thiobenzoic acid, resulting from the reac-
tion of 5,5′-dithiobis-(2-nitrobenzoic acid) (DTNB) with
GSH. In this reaction, GSH is oxidised to oxidized glutathione
(GSSG), which is then reconverted to GSH in the presence of
GSH reductase and NADPH. The formation of 2-nitro-5-
thiobenzoic acid was followed at 412 nm using a Shimadzu
UV-160 spectrophotometer.

Rat brain cortex and hippocampus samples were precipi-
tated with 10% 5-sulfosalicyclic acid. Samples were centri-
fuged for 5 min at 10 000g and the supernatant was
neutralised with 6–9 ml of neat triethanolamine. Both 6 mm
DTNB and 0.3 mm NADPH were made in the stock buffer
(143 mm sodium phosphate and 6.3 mm Na4-EDTA, pH 7.5)
daily. A stock solution of 50 units of GSH reductase per
millilitre was stored at 4°C. GSH standard stock solution
was made in double-distilled water. To the NADPH solution
(140 ml), 20 ml of DTNB solution and 40 ml of sample or
standard were added in polyethylene dark tubes and incubated
at 37°C for 10 min. Ten microlitres of a 10-times diluted GSH
reductase stock solution was added to each tube. The samples
were vortexed and the absorbance was read at 412 nm. The
GSH levels in the brain cortex and hippocampus were
expressed as nanomoles per milligram of protein. Protein
concentrations were measured using Lowry’s method.[26] All
chemicals were purchased from Sigma-Aldrich (Vienna,
Austria).

Synaptosomal preparation
Synaptosomes were prepared as previously described by
Bonnet and Costentin,[27,28] with minor modifications. Total
brain was homogenised in 10 volumes of 0.32 m sucrose using
a Teflon–glass homogeniser (800 rpm). The homogenates
were then centrifuged at 1000g for 10 min to give a nuclear
pellet containing nuclei, cell bodies and axon fragments.
Supernatants were stored at 4°C, and the pellet was resus-
pended in 10 volumes of 0.32 m sucrose and centrifuged for
10 min at 1000g. Then supernatants were pooled and centri-
fuged at 17 500g for 30 min at 4°C, after which the superna-
tant was discarded and the final pellet resuspended in ice-cold
Krebs–Ringer buffer, pH 7.6 ( NaCl 120 mm; KCl 4.8 mm;
CaCl2 1.3 mm; MgSO4 1.2 mm; KH2PO4 1.2 mm; NaHCO3

25 mm; glucose 6 mm). Protein concentrations in the pellets
were measured by the method of Lowry, and the protein
content of each sample was adjusted to 1 mg/ml.[26] All chemi-
cals were purchased from Sigma-Aldrich (Vienna, Austria).

Measurement of formation of reactive
oxygen species
The dicholorofluorescein (DCF) assay was used to measure
the levels of ROS according to the procedure previously
described by Wang and Joseph.[29] The cell-permeable 2,7-
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dichlorofluorescin diacetate (DCF-DA) crosses into the syn-
aptosomes, where it is deesterified by cellular esterases,
resulting in DCFH. DCFH in turn is converted on oxidation to
the highly fluorescent DCF.

A 10 mm stock solution of 2,7-dichlorofluorescin diacetate
(DCF-DA) in ethanol was stored at -70°C. 0.5 mm and 1 mm
KA or GCEE solutions were prepared in saline. Synapto-
somes were pre-incubated for 3 h at room temperature with
KA or KA and GCEE in concentrations of 0.5 mm and 1 mm
according to the procedure previously described by Camins
et al. with minor modifications.[30] Synaptosomes were incu-
bated with 10 mm DCF-DA for 30 min at room temperature,
then were spun at 3000g for 5 min at 4°C and resuspended in
phosphate-buffered saline (PBS). Synaptosomes that were
pre-incubated with saline were used as control. DCF fluores-
cence was measured at lex = 495 and lem = 530 nm. The
measurements were performed on a Molecular Devices
SpectraMax microtiter plate reader. All chemicals were
purchased from Sigma-Aldrich (Vienna, Austria).

RNA isolation, reverse transcription and
real-time polymerase chain reaction
Total RNA was isolated from the hippocampus and cortex
tissues using Trizol reagent (Gibco BRL Life Technologies,
Grand Island, NY, USA) followed by phenol–chloroform
exraction and isopropanol precipitation.[31] Total RNA (1 mg/
ml) was used for first-strand cDNA synthesis by Moloney-
murine leukemia virus (MMuLV) reverse transcriptase
enzyme (MBI Fermantas, Slovenia).

The forward and reverse primers for c-fos (Gene bank:
X06769) and glyceraldehyde-3-phoshate hydrogenase
(GAPDH) (Gene bank: AF106860) were derived from earlier
publications.[32,33] The forward primers were 5′-AAT AAG
ATG GCT GCA GCC AA-3′ for c-fos and 5′-AAG GTC ATC
CCA GAG CTG AA-3′ for GAPDH. The reverse primers
were 5′-TTG GCA ATC TCG GTC TGC AA-3′ for c-fos and
5′-ATG TGA GCC ATG AGG TCC AC-3′ for GAPDH. Con-
ditions for PCRs were optimised in a gradient cycler relative
to Taq DNA polymerase (MBI Fermantas, Slovenia), primers
(Thermo Electron GmbH, Germany), MgCl2 concentrations
and various annealing temperatures. Optimised settings were
transferred to real-time PCR protocols on a Stratagene
Mx3000P real-time detection system (Stratagene, USA).
Amplification of 1 ml of cDNA (1/5 diluted) was carried out
using 1 ml of 15 pmole forward and reverse primers, 12.5 ml
of 2X Brilliant SYBR Green QPCR Master Mix (Stratagene,
USA) and 9.5 ml of water in a total volume of 25 ml. The
amplification protocol was followed as an initial melting step
at 95°C for 10 min, followed by 40 cycles of a 95°C melting
step for 30 s, a 60°C annealing step for 1 min, a 72°C elon-
gation step for 1.5 min and an additional 3 min at 72°C. Fol-
lowing amplification, a dissociation curve analysis was
performed to confirm the purity of PCR products. Cycling
parameters for melting curve analysis were 1 min at 95°C,
ramping down to 55°C, then ramping up temperature from 55
to 95°C with a default rate of 0.2°C/s.

Statistical analyses
Data were analysed using analysis of variance (ANOVA). In
the case of a significant ANOVA, post-hoc analysis was per-

formed using Tukey’s or the least significant differences
(LSD) test. Values are expressed as mean � standard error
(SEM). A level of P < 0.05 was considered to be statistically
significant. Statistical analyses were performed with the
Statistical Package for the Social Sciences for Windows
(SPSS, Version 13.0).

Results

Seizure sensitivity
Systemic KA administration produced clear behavioural
changes. KA-treated rats showed an increased locomotor
activity, rapid wet-dog shakes and recurrent tonic–clonic con-
vulsions. GCEE or GCEE+KA treatments did not completely
abolish abnormal motor behaviours. In the KA group, wet-dog
shakes were observed 30 min after KA administration. In the
KA+GCEE group, wet-dog shakes were observed 50 min
after treatment. The severity of the convulsions was not
different in GCEE or KA+GCEE-treated animals when
compared to control animals.

Glutathione levels
Cortex GSH levels in the control, KA, GCEE and KA+GCEE
groups were determined as 9.62, 5.26, 9.73 and
7.23 nmole/mg protein, respectively (Figure 1). The increased
levels of GSH in the GCEE-treated group were not significant
when compared to control animals. KA treatment signifi-
cantly decreased the levels of GSH when compared to the
control or the KA+GCEE-treated group (P < 0.05). Hippo-
campus GSH levels in control, KA, GCEE and KA+GCEE
groups were determined as 10.47, 4.08, 11.47 and
6.11 nmole/mg protein, respectively (Figure 1). GCEE treat-
ment significantly increased the levels of GSH when
compared to control (P < 0.05). KA treatment significantly
decreased the levels of GSH when compared to control
(P < 0.05). In addition, a significant increase in the levels of
GSH was observed in the KA+GCEE group when compared
to KA-treatment only (P < 0.05).

Formation of reactive oxygen species
ROS formation was measured using DCF fluorescence assay.
DCF is formed by the reaction of DCFH with ROS. Figure 2
shows the ROS levels in synaptosomes incubated with KA or
GCEE. Synaptosomes incubated with saline were used as the
control treatment. DCF fluorescence in all treatment groups
was expressed as a percentage of the control. The levels of
ROS formation were significantly increased in synaptosomes
incubated with 0.5 or 1 mm KA when compared to control
(P < 0.05). The levels of ROS formation were significantly
decreased in synaptosomes incubated with 0.5 or 1 mm GCEE
against KA when compared to 0.5 or 1 mm KA treatments
(P < 0.05).

c-fos expressions
The relative gene expressions of c-fos were quantified accord-
ing to the comparative Ct method.[34,35] Ct values indicate a
PCR cycle number at which the measured fluorescence of the
indicator dye (SYBR Green I), corresponding to the quantity
of amplified products, is increasing in an exponential fashion
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above background. In this study GAPDH was used as an
endogenous control for normalisation and untreated control
group samples were used as the calibrator for quantification.
The comparative Ct (2-DDCt) method is a mathematical model
that calculates changes in gene expression as a relative fold
difference between an experimental and calibrator sample as
follows:

ΔC average - C average Ct t t= −c fos GAPDH

ΔΔ Δ ΔC average C untreated sample average C
treated sample

t t t= −

The fold change in c-fos = 2-DDCt

Figure 3 shows the relative expressions of c-fos mRNA in
cortex and hippocampus tissues. According to our results, KA

treatment significantly increased the expressions of c-fos both
in the cortex (3.64 � 0.44) and hippocampus (2.89 � 0.38)
when compared to the control group (P < 0.05). In addition
there was a significant increase in the expression levels of
c-fos mRNA in cortex treated with GCEE when compared to
KA treatment only (P < 0.05).

Discussion

Regulation of apoptosis is very important for nervous system
integrity. Inappropriate neuronal death occurs in a number of
clinically important neuropathological states in the adult
nervous system, such as stroke, amyotrophic lateral sclerosis,
and Parkinson’s and Alzheimer’s diseases.[36] Excitotoxicity
is widely considered to be a contributing factor in neuronal
death associated with several types of acute brain injury
ranging from cerebral ischoemia to epilepsy and mechanical
brain trauma.[37] Kainic acid, a potent glutamate agonist, is
widely used to induce seizures to elucidate cell-death
mechanisms.[38]

It has been shown that intraperitoneal injection of
N-methyl-d-aspartate (NMDA) or KA can induce both c-fos
mRNA and c-fos protein in cell extracts of the murine whole
brain.[39,40] KA-induced seizures lead to c-fos expression in
the hippocampus and cortex due to the increased levels of
intracellular calcium.[38,39] It has been proposed that c-fos may
function as a third messenger in an intracellular cascade
linking extracellular stimuli to long-term adaptative pro-
cesses, including neuronal plasticity and delayed neuronal
death.[40–42] DNA damage in neuronal death and excitotoxicity
is the result of oxidative stress triggered by KA. It has been
shown that KA treatment causes DNA damage in hippocam-
pal neurons and induces c-fos and c-jun expression.[43]

Nuclear factor kappa B (NFKB) and activator protein-1
(AP-1) are regulated by the intracellular redox state. These
transcripton factors are implicated in the inducible expression
of a wide variety of genes involved in oxidative stress and
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cellular response mechanisms. AP-1 is formed by the het-
erodimerisation of c-jun and c-fos proteins. Superoxide pro-
duced by a xanthine/xanthine oxidase system and hydrogen
peroxide induce the expression of several early response
genes, including c-fos and c-jun.[44–48] The cis-acting element
mediates c-fos expression in response to activation by serum,
certain growth factors, UV radiation and serum response
element (SRE) in the c-fos promoter.[49] In addition, drug-
induced seizure induces AP-1 activation in the hippo-
campus. Consistently, our results showed that KA treatment
significantly increases the levels of c-fos mRNA expression
both in the hippocampus and the cortex.

Interestingly, GCEE treatment significantly induced the
expression of c-fos mRNA in the cortex but not in the hippoc-
ampus. The observed regulator effect of GCEE on the expres-
sion levels of c-fos may be explained by the antioxidant
mechanisms regulating AP-1 activation. It has been reported
that AP-1 activity is sensitive to an antioxidant effect. Certain
antioxidant compounds are capable alone of influencing AP-1
activation. Phenolic antioxidants, e.g. butylated hydroxytolu-
ene and butylated hydroxyanisole (BHA) alone, have been
observed to substantially increase the expression of c-fos and
c-jun mRNA and to induce AP-1 DNA binding on their
own.[50] The AP-1 function is also responsive to thiol antioxi-
dants. It has been found that intracellular thioredoxin and
glutathione status influence AP-1 transactivation.[51,52] Direct
interaction of oxidants and antioxidants with specific cysteine
groups of c-fos and c-jun polypeptides may regulate the
expression of these proteins.[53,54] The possible interaction of
certain proteins with SRE during AP-1 activation may be
sensitive to intracellular changes in the thiol redox state
caused by antioxidants. Reducing thiol agents such as
N-acetyl cysteine (NAC) enhances DNA binding activity and
transactivation of AP-1. In addition, the role of c-fos and c-jun
in the specific activation of gene expression is mediated by a
complex site called the electrophile response element (EpRE),

found in the mouse glutathione S-transferase Ya-subunit gene.
Moreover, EpRE and the antioxidant response element are
known to be bound by c-fos/c-jun and c-jun, respectively,
indicating that AP-1 may be implicated in electrophilic and
antioxidant responses.[49] Our results also indicate that
KA+GCEE treatment downregulated the expression of c-fos
mRNA, both in the hippocampus and in the cortex, but this
regulation did not reach a significant level.

The molecular mechanisms leading to excitotoxicity are
not known yet, but several pathways, including the activation
of multiple enzyme cascades and the increased levels of free
intracellular calcium, have been elucidated.[9] It is known that
oxidative stress and ROS formation are also key components
of glutamate-induced excitotoxicity.[55] Glutamate receptor
activation, free-radical generation and mitochondrial energy
metabolism are interconnected systems, linked through the
intracellular actions of calcium.[56,57]

According to our data, KA treatment significantly
increased the levels of ROS formation in brain synapto-
somes, supporting the idea that ROS-generating mechanisms
are involved in KA-induced excitotoxicity. GCEE and
GCEE+KA treatments significantly decreased the levels of
ROS formation, confirming the free-radical scavenger activity
of GCEE. Drake et al. showed that rat brain synaptosomes in
vitro or in vivo and treated with GCEE were less susceptible
to ROS formation induced by peroxynitrite (ONOO-) as
assessed by the DCF fluorescence assay.[23]

The excitotoxicity also occurred indirectly, through the
toxic effects of the depleted levels of intracellular glutathione.
Cysteine is normally transported into cells via a cysteine
carrier that also transports glutamate out of the cell. The
action of this amino acid carrier is driven by the glutamate
concentration gradient across the cell membrane. An increase
in extracellular glutamate concentration can alter this gradient
and reduce intracellular transfer of cysteine. Since cysteine is
a vital precursor of glutathione, the intracellular concentration
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of this important antioxidant and free-radical scavenger will
be affected.[57,58] GSH effectively scavenges free radicals and
plays important roles in antioxidant defence, metabolism
and apoptosis.[59–61] GSH synthesis is primarily regulated by
g-glutamylcysteine synthase (GCS) activity, cysteine avail-
ability and non-allosteric feedback inhibition by GSH on
GCS.[62–64]

GSH deficiency contributes to oxidative stress, which plays
a key role in ageing and the pathogenesis of acute or chronic
neurodegenerative diseases, including epilepsy, stroke, and
Alzheimer’s and Parkinson’s disease.[61] The regulation of
GSH metabolism is critical for the development of neuropro-
tective treatment strategies.[59,65] Brain cells are particularly
vulnerable to oxidative stress because of their high oxygen
utilisation, high iron content, presence of excess unsaturated
fatty acids, and decreased activities of antioxidant enzymes
like superoxide dismutase, catalase and glutathione reduc-
tase.[66]

Thiol-dependent reactions provide an important antioxi-
dant defence in the brain.[67] Factors (insulin and growth
factors) that stimulate cysteine (cystine) uptake by cells gen-
erally may lead to an increase in intracellular GSH levels.
It has been reported that administration of cysteine or its
precursors such as cysteine, NAC and l-2-oxothiazolidine-
4-carboxylate is able to increase GSH biosynthesis.[23,61]

GSH esters have also been used as an alternative strategy to
increase cellular GSH content since these substances are
able to cross the blood–brain barrier easily. GSH diethyl-
ester is more rapidly transported into cells than GSH
monoester.[68,69]

GCEE is an antioxidant agent and has the ability to
increase GSH levels in the brain by providing the limiting
substrate cysteine and preventing feedback inhibition of rate
limiting enzyme GCS in GSH biosynthesis.[22] Neuroprotec-
tive effects of GCEE have also been demonstrated in several
oxidative stress models, induced by peroxynitrite and
amyloid-beta peptide 1–42.[23,70,71] GSH deficiency is induced
in the brain when l-buthionine (S,R)-sulfoximine (BSO), a
transition-state inhibitor of GCS enzyme, is administered to
rats. Drake et al. showed that the administration of 150 mg/kg
GCEE (i.p.) to the BSO-injected rats increased the levels of
GSH in brain. In addition, a single i.p. injection of 150 mg/kg
GCEE to gerbils caused a 41% increase in total GSH levels in
the brain.[23]

Similarly, it has been shown that GCEE treatment sig-
nificantly upregulates mitochondrial GSH content and pro-
vides protection against peroxynitrite-induced mitochondrial
damage.[70] Our results showed that GCEE treatment with a
dose of 10 mg/kg significantly changes GSH levels in the
hippocampus but not in the cortex. However, GCEE treat-
ment against KA significantly increases GSH levels both in
the hippocampus and the cortex when compared with KA
alone.

Antioxidants are known to help after insults that have
induced neurodegeneration,[72] but they may supress endog-
enous defence mechanisms such as superoxide dismutase and
glutathione peroxidase,[73] therefore it may be appropriate to
emphasise that in situations when repeated occurence of oxi-
dative damage cannot be prevented, administration of antioxi-
dants may cause cumulative damage.

Conclusions

In conclusion, our results indicate that GCEE treatment is able
to provide a protection against KA-induced excitotoxicity in
rat brains due to the increased levels of GSH both in the
hippocampus and cortex and the decreased levels of ROS
formation in the synaptosomes. Further experiments are nec-
essary to clarify the potential neuroprotective actions of
GCEE in the brain at protein or mRNA levels since this agent
has the potential to be an antioxidant therapy for neurodegen-
erative processes or diseases.
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